ENVIRONMENT (Ś)

Forests \% of total area - forest cover indicator
structure indicator
$=\frac{\text { forest area (as of } 31 \text { December) [in ha] }}{\text { total area [in ha] }} \times 100$

Area of special nature value under legal protection in \% of total area
structure indicator
$=\ldots$ area of special nature value under legal protection (as of 31 December) [in ha]
total area [in ha]

Population connected to wastewater treatment plants in \% of total population

structure indicator
$\frac{\text { number of population connected to wastewater treatment plants (as of } 31 \text { December) }}{\text { total number of population (as of } 31 \text { December) }} \times 100$

Industrial and municipal wastewater, treated in \% of wastewater requiring treatment (discharged to water or land) structure indicator

Municipal waste (solid; excluding separated) collected during the year per capita in kg intensity indicator

Share of waste collected separately in \% of total waste collected
structure indicator
$=\frac{\text { waste collected separately during the year [in t] }}{\text { total waste collected during the year [in } t]} \times 100$

POPULATION (L)

Population per km² of total area - population density

intensity indicator
$=\frac{\text { number of population (as of } 31 \text { December) }}{\text { total area [in ha] } \times 0,01}$

Females per 100 men - femininity ratio

intensity indicator
$=\frac{\text { number of women (as of } 31 \text { December) }}{\text { number of men (as of } 31 \text { December) }} \times 100$

Population under the age of $\mathbf{2 0}$ years in \% of total population structure indicator
$=\frac{\text { number of population aged } 0-19 \text { (as of } 31 \text { December) }}{\text { total number of population (as of } 31 \text { December) }} \times 100$

Population aged 65 and more in \% of total population

structure indicator

Non-working age population per 100 persons of working age - age dependency ratio intensity indicator

$$
=\frac{\begin{array}{c}
\text { number of pre-working age population (as of 31 December) }+ \\
\text { number of post-working age population (as of 31 December) }
\end{array}}{\text { number of working age population (as of 31 December) }} \times 100
$$

Three basic economic age groups are defined:

- pre-working age - males and females aged 0-17,
- working age - males aged 18-64, females aged 18-59,
- post-working age - males aged 65 and more, females aged 60 and more.

The non-working age population is understood as the pre-working and post-working age population.

Demographic dynamics rate

intensity indicator
$=\frac{\text { number of live births (during the year) }}{\text { number of deaths (during the year) }}$

Natural increase per $\mathbf{1 0 0 0}$ population

intensity indicator
$=\frac{\text { number of live births (during the year) - number of deaths (during the year) }}{\text { total number of population (as of } 30 \text { June) }} \times 1000$

Net internal and international migrations for permanent residence per 1000 population

 intensity indicator$=\frac{\text { registrations for permanent residence (during the year) - registrations of departure (during the year) }}{\text { total number of population (as of } 30 \text { June) }} \times 1000$

Internal migration for permanent residence - changes in the place of residence within a country, related to crossing the administrative border of a gmina, including - in the case of urban-rural gminas - changes in the place of residence within a gmina, i.e. from rural to urban gminas and vice versa.
International migration for permanent residence -departures abroad and arrivals from abroad in order to settle (permanent residence).

LABOUR MARKET (RP)

Employed persons per 1000 population

intensity indicator
$=\frac{\text { number of employed persons (as of } 31 \text { December) }}{\text { total number of population (as of } 31 \text { December) }} \times 1000$

Registered unemployed persons per 1000 working age population
intensity indicator
number of registered unemployed persons (as of 31 December)
number of working age population (as of 31 December)
The working-age population is understood as males aged 18-64 and females aged 18-59.

MUNICIPAL INFRASTRUCTURE (IK)

Distribution water supply network per $100 \mathbf{~ k m}^{\mathbf{2}}$ in $\mathbf{~ k m}$

intensity indicator
$=\frac{\text { Length of distribution water supply network (as of } 31 \text { December) [in km] }}{\text { total area [in ha] } \times 0,01} \times 100$

In the same way the indicators for other distribution networks - sewage and gas should be counted.

Consumption of water from water supply system in households per capita in $\mathbf{m}^{\mathbf{3}}$

 intensity indicatorconsumption of water from water supply system in households (during the year) [in m^{3}]
total number of population (as of 30 June)

Consumption of gas from gas supply system in households per capita in kWh

intensity indicator

consumption of gas from gas supply system in households (during the year) [in MWh] x 1000
total number of population (as of 30 June)

DWELLINGS (M)

Average number of rooms in dwellings in dwelling stocks

 arithmetic average$=\quad$ number of rooms in dwelling stocks (as of 31 December)
$=$ number of dwellings in dwelling stocks (as of 31 December)

Average number of persons per dwelling in dwelling stocks

 intensity indicatortotal number of population (as of 31 December)
$=$ number of dwellings in dwelling stocks (as of 31 December)

Average number of persons per room in dwelling stocks intensity indicator

$$
=\frac{\text { total number of population (as of } 31 \text { December) }}{\text { number of rooms in dwelling stocks (as of } 31 \text { December) }}
$$

Average useful floor area per dwelling in dwelling stocks in $\mathbf{m}^{\mathbf{2}}$

arithmetic average

$=$ useful floor area of dwellings in dwelling stocks (as of 31 December) [in m^{2}]
number of dwellings in dwelling stocks (as of 31 December)

Average useful floor area in dwelling stocks per capita in $\mathbf{m}^{\mathbf{2}}$

intensity indicator

Dwellings per 1000 population

intensity rate
$=\frac{\text { number of dwellings in dwelling stocks (as of } 31 \text { December) }}{\text { total number of population (as of } 31 \text { December) }} \times 1000$

Dwellings in dwelling stocks connected to water supply system in \% of total dwellings
intensity indicator
$\frac{\text { number of dwellings in dwelling stocks connected to water supply system (as of } 31 \text { December) }}{\text { total number of dwellings in dwelling stocks (as of } 31 \text { December) }} \times 100$
In the same way, indicators for dwellings fitted with other installations should be counted - lavatory rinsed off, bathroom, gas from gas supply system and central heating.

Dwellings completed per 1000 population
intensity indicator
$=\frac{\text { number of dwellings completed (during the year) }}{\text { total number of population (as of } 30 \text { June) }} \times 1000$

Rooms in dwellings completed per $\mathbf{1 0 0 0}$ population

intensity indicator
$=\frac{\text { number of rooms in dwellings completed (during the year) }}{\text { total number of population (as of } 30 \text { June) }} \times 1000$

Average useful floor area of dwellings completed in $\mathbf{m}^{\mathbf{2}}$

arithmetic average
useful floor area of dwellings completed (during the year) [in m²]
$=$ number of dwellings completed (during the year)

EDUCATION (E)

Children aged 3-6 in pre-primary education institutions per 1000 children of a given age group structure indicator

> number of children attending pre-primary education establishments at age 3-5
$=$ \qquad x 1000 number of population aged 3-6 (as of 31 December)

Gross enrolment rate for primary schools in \%

structure indicator
$=\frac{\text { number of pupils in primary schools regardless of age (as of beginning of school year) }}{\text { number of population aged 7-14 (as of 31 December) }} \times 100$

In 2010-population aged 7-12.
Pupils in primary schools (excluding special schools) per section
intensity indicator
$=\quad$ number of pupils in primary schools (as of beginning of school year)
$=$ number of sections in primary schools (as of beginning of school year)

Pupils in primary schools (excluding special schools) per teacher intensity indicator
$=\frac{\text { number of pupils in primary schools (as of beginning of school year) }}{\text { number of teachers in primary schools (as of beginning of school year) }}$

SOCIAL INFRASTRUCTURE (IS)

Number of population per out-patient department

intensity indicator
_ total number of population (as of 31 December)
$=$ number of out-patient departments (as of 31 December)

Number of population per pharmacy and pharmaceutical outlet

intensity indicator

$=\frac{\text { total number of population (as of } 31 \text { December) }}{\text { number of pharmacies (as of } 31 \text { December) }+ \text { number of pharmaceutical outlets (as of } 31 \text { December) }}$

Collection of public libraries per $\mathbf{1 0 0 0}$ population in vol.
intensity indicator
$=\frac{\text { collection of public libraries (as of } 31 \text { December) [in vol.] }}{\text { total number of population (as of } 31 \text { December) }} \times 1000$

Loans of public libraries' collection per borrower in vol.

arithmetic average
$=\frac{\text { loans of public libraries' collection (during the year) [in vol.] }}{\text { number of public libraries' borrowers (during the year) }}$

Bed places in tourist accommodation facilities per 10 thousand population

 intensity indicator$=\frac{\text { number of bed places in tourist accommodation facilities (as of 31 July) }}{\text { total number of population (as of } 30 \text { June) }} \times 10000$

ENTITIES OF THE NATIONALECONOMY (PG)

Entities of the national economy in the REGON register per 1000 population

intensity indicator

Natural persons conducting economic activity in the REGON register per 1000 population
intensity indicator
number of natural persons conducting economic activity in the REGON register (as of 31 December)
total number of population (as of 31 December)

GMINA BUDGETS (BG)

Excluding gminas being also cities with powiat status.

When calculating indicators per capita for Poland, macroregion, voivodship, regions and subregions, the total number of population should be reduced by the number of people living in the cities with powiat status.

Total revenue per capita in PLN

intensity indicator
total revenue (during the year) [in PLN]
number of population (as of 30 June)

Own revenue per capita in PLN
intensity indicator
$=$ \qquad
$=$ number of population (as of June)

Total expenditure per capita in PLN

intensity indicator
$=\frac{\text { total expenditure (during the year) [in PLN] }}{\text { number of population (as of } 30 \text { June) }}$

Current expenditure per capita in PLN

intensity indicator
current expenditure (during the year) [in PLN]
$=$ number of population (as of 30 June)

Investment expenditure per capita in PLN

Intensity indicator
investment expenditure (during the year) [in PLN]
number of population (as of 30 June)

COMPLEMENTARY DATA FOR POWIATS (DP)

LABOUR MARKET

Persons working in agriculture, forestry and fishing in \% of total employed persons

structure indicator
$=\frac{\text { number of persons working in agriculture, forestry and fishing (as of } 31 \text { December) }}{\text { total number of employed persons (as of } 31 \text { December) }} \times 100$
In the same way one should count indicators for persons employed in:

- industry and construction,
- trade; repair of motor vehicles; transportation and storage; accommodation and catering; information and communication,,
- financial and insurance activities; real estate activities,
- other services.

Employment per 1000 population

intensity indicator
$=\frac{\text { number of employed persons (as of } 31 \text { December) }}{\text { total number of population (as of } 31 \text { December) }} \times 1000$

Registered unemployed persons out of job for more than 1 year in \% of the total unemployed
structure indicator
$\frac{\text { number of registered unemployed persons out of job for more than } 1 \text { year (as of } 31 \text { December) }}{\text { total number of unemployed persons (as of } 31 \text { December) }} 100$
The number of registered unemployed persons out of job for more than 1 year is the sum of persons unemployed for 12-24 months and over 24 months.

Registered unemployed persons under the age of 24 in \% of the total unemployed

structure indicator
$=\frac{\text { number of unemployed persons under the age of } 24 \text { (as of } 31 \text { December) }}{\text { total number of unemployed persons (as of } 31 \text { December) }} \times 100$

Registered unemployment rate in \%
structure indicator

$$
=\frac{\text { number of registered unemployed persons (as of } 31 \text { December) }}{\text { number of economically active civil population (as of } 31 \text { December) }} \times 100
$$

Average monthly gross wages and salaries in PLN

arithmetic average
amount of gross wages and salaries in a year [in thousand PLN] x 1000
average number of employed persons in a year $\times 12$

Average monthly gross wages and salaries (Poland = 100; voivodship =100)
relation to the national average (voivodship)
$=\frac{\text { average monthly gross wages and salaries for a given territorial unit [in PLN] }}{\text { average monthly gross wages and salaries for Poland (voivodship) [in PLN] }} \times 100$

MUNICIPAL INFRASTRUCTURE

Hard surface communal roads per $100 \mathbf{~ k m}^{\mathbf{2}}$ in $\mathbf{~ k m}$

intensity indicator

In the same way the indicator for district roads should be counted.

EDUCATION

Children aged 3-5 in pre-primary education institutions per 1000 children of a given age group structure indicator
number of children attending pre-primary education establishments at age 3-5
$=$ \qquad x 1000
number of population aged 3-5 (as of 31 December)

SOCIAL INFRASTRUCTURE

Number of population per 1 out-patient health care unit
intensity indicator

$$
\frac{\text { total number of population (as of } 31 \text { December) }}{\text { number of out-patient departments (as of } 31 \text { December) + number of doctors practices (as of } 31 \text { December) }}
$$

POWIAT BUDGETS

When calculating indicators per capita for Poland, macroregion, voivodship, regions and subregions, the total number of population should be reduced by the number of people living in the cities with powiat status.

Total revenue per capita in PLN

intensity indicator

Own revenue per capita in PLN
intensity indicator

Total expenditure per capita in PLN

intensity indicator

Current expenditure per capita in PLN

intensity indicator
current expenditure (during the year) [in PLN]
number of population (as of 30 June)

Investment expenditure per capita in PLN

intensity indicator
investment expenditure (during the year) [in PLN]
$=$ number of population (as of 30 June)

BUDGETS OF CITIES WITH POWIAT STATUS

When calculating indicators per capita for Poland, macroregion, voivodship, regions and subregions, the total number of population should be reduced by the number of people living in the powiats.

Total revenue per capita in PLN
intensity indicator
total revenue (during the year) [in PLN]
$=$ number of population (as of 30 June)

Own revenue per capita in PLN
intensity indicator
$\frac{\text { own revenue (during the year) [in PLN }}{\text { number of population (as of } 30 \text { June) }}$

Total expenditure per capita in PLN

intensity indicator
total expenditure (during the year) [in PLN]
$=\quad$ number of population (as of 30 June)

Current expenditure per capita in PLN

intensity indicator
current expenditure (during the year) [in PLN]
$=$ number of population (as of 30 June)

```
Investment expenditure per capita in PLN
intensity indicator
    investment expenditure (during the year) [in PLN]
    number of population (as of 30 June)
```

